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A roadmap for improving the
representation of photosynthesis
in Earth system models

Summary

Accurate representation of photosynthesis in terrestrial biosphere

models (TBMs) is essential for robust projections of global change.

However, current representations vary markedly between TBMs,

contributing uncertainty to projections of global carbonfluxes. Here

we compared the representation of photosynthesis in seven TBMs

by examining leaf and canopy level responses of photosynthetic

CO2 assimilation (A) to key environmental variables: light, temper-

ature, CO2 concentration, vapor pressure deficit and soil water

content. We identified research areas where limited process

knowledge prevents inclusion of physiological phenomena in

current TBMs and research areas where data are urgently needed

for model parameterization or evaluation. We provide a roadmap

for new science needed to improve the representation of photo-

synthesis in the next generation of terrestrial biosphere and Earth

system models.

Introduction

Fossil energy use is the dominant driver of the increase in
atmospheric CO2 concentration (Ca) and the principal cause of
global climate change Intergovernmental Panel onClimateChange
(2013). Many of the observed and projected impacts of rising Ca

portend increasing environmental and economic risk, yet the
uncertainty surrounding the projection of our future climate by
Earth system models (ESMs) is unacceptably high (Friedlingstein
et al., 2006, 2014).

Although CO2 emissions associated with anthropogenic activity
are notable (11 Pg C yr�1), they represent < 10% of the gross
carbon fluxes between the land surface and the atmosphere (Beer
et al., 2010; Boden et al., 2013; Le Qu�er�e et al., 2015). Terrestrial
photosynthetic CO2 assimilation (A) is the largest of these CO2

fluxes (~120 Pg C yr�1), subsidizing our use of fossil fuels through
the net assimilation of about one-third of the CO2 emissions
associated with anthropogenic activities (Le Qu�er�e et al., 2015).
However, there is critical uncertainty about how the terrestrial
carbon sink will be affected by changes in A with rising Ca,
temperature and drought (Gregory et al., 2009; IPCC, 2013;

Friedlingstein et al., 2014). Therefore, reducing the uncertainty
associated with model representation of A is an essential part of
improving confidence in projections of global change (Ciais et al.,
2013).

In this study we have focused on photosynthesis, but recognize
that improving the understanding and projection of the terrestrial
biosphere’s response to global change also depends on realistically
representing many additional processes that are down stream of
carbon assimilation (e.g. carbon allocation, plant and soil respira-
tion, and nutrient cycling). Of particularly relevance to photosyn-
thesis is the allocation of extra carbon to leaf area in trees grown at
elevated Ca (Ainsworth & Long, 2005). Model representation and
integration of these processes, and how the balance between them
shifts in their individual and combined responses to environmental
drivers, will also be critical in order to capture whole system
responses, but such a comprehensive discussion is beyond the scope
of this study.

We examined model representations of A in seven terrestrial
biosphere models (TBMs). These models include four that
represent the land component of ESMs which were part of the
recent Coupled Model Intercomparison Project (CMIP5) – the
main resource for the IPCCFifth Assessment Report (IPCC, 2013;
Friedlingstein et al., 2014). Our approach focuses on how
physiological responses are represented by TBMs. We compared
modeled responses of A to key environmental variables in order to
identify areas of model divergence that reflect gaps in current
understanding of the physiological and environmental controls of
A. In the secondhalf of the paper,we turn to issues of scale– vertical,
horizontal and temporal – and consider how representation and
parameterization of leaf-level processes is scaled to the canopy
within current model frameworks.

We had three goals: (1) understand how models differ in their
representation of A; (2) identify gaps in current understanding ofA
that contribute to uncertainty in model output; (3) identify areas
where current process knowledge and emerging data sets can be
used to improvemodel skill. This study provides recommendations
for immediate improvements that can be made to current model
representation ofA and also highlights the scientific activity needed
to further advance representation of A in the next generation of
TBMs.

Representation of leaf photosynthesis in terrestrial
biosphere models

Current model structure and parameterization

The Farquhar, von Caemmerer and Berry (FvCB) model of A
(Farquhar et al., 1980; von Caemmerer & Farquhar, 1981; von
Caemmerer, 2000) provides a robustmechanistic representation of
A in C3 species, and is the foundation for model estimation of gross
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primary production (GPP) in many TBMs (Cramer et al., 2001;
Rogers, 2014), including the seven models considered here
(BETHY, CLM, ED2, G’DAY, JSBACH, JULES and O-CN;
Table 1). The formulations of the FvCBmodel used in these TBMs
include elements of; Collatz et al. (1991), in CLM, ED2 and
JULES; Foley et al. (1996), in ED2; and Kull & Kruijt (1998), in
O-CN (Table 1). The FvCBmodel represents photosynthetic CO2

assimilation as the most limiting of two biochemical processes:
Rubisco carboxylation, and ribulose-1,5-bisphosphate (RuBP)
regeneration driven by electron transport. These processes limit A
in most environments; however, Sharkey (1985) subsequently
described how limitations on triose phosphate utilization (TPU
limitation) could also limit A under some conditions. Only two
models in this study included TPU limitation (CLM and JULES;
Table 1).

Similar biochemical models have been developed for the C4

photosynthetic pathway (von Caemmerer, 2000). For reasons of
space, we limit our discussion to model treatment of C3

photosynthesis. However we note that a similar exercise focused
on C4 photosynthesis would be valuable.

Models typically represent stomatal conductance (gs) using a
coupled relationship with A that varies with atmospheric, or leaf-
surface, CO2 concentration, and some measure of atmospheric
humidity. This model approach was originally formulated by Ball
et al. (1987), who used a direct dependence on relative humidity
(RH) in their equation for gs. Ball et al.’s (1987) equation is still
widely used in many TBMs, including CLM. Leuning (1995)
suggested an alternative equation that depends on vapor pressure
deficit (VPD) rather than RH. ED2 uses the Leuning (1995)
equation, while JULES uses a very similar equation developed by
Jacobs (1994). The approaches to represent gs implemented by the
models considered here are quite diverse (Table 1) which has a
wide-ranging impact on the model outputs we considered.

The TBMs in this study represent vegetation using broad plant
functional types (PFTs). The FvCB model is parameterized with a
number of important constants that are typically the same for all
PFTs.PFTs are distinguishedwith respect tophotosynthesis through
differences in the estimates of the maximum carboxylation rate of
Rubisco (Vc,max), the maximum rate of electron transport (Jmax) and
the slope of the stomatal conductance response. Several groups are
now working towards next-generation vegetation models in which
PFTs are replaced by ‘trait-based approaches’ (Wullschleger et al.,
2014). This catchall phrase includes leveraging trait-environment
linkages (van Bodegom et al., 2014; Reich, 2014; Ali et al., 2015),
optimality approaches (Xu et al., 2012; Meir et al., 2015), trait
filtering (Fisher et al., 2012) and adaptive global vegetation models
(Scheiter et al., 2013). However, our review is relevant to these
approaches as well, as they still employ similar representations of
photosynthesis. The key difference lies in parameterization, which
we discuss when considering scaling to landscapes.

Mesophyll conductance

In C3 species, mesophyll conductance (gm) describes the conduc-
tance to CO2 diffusion from the intercellular airspace within a leaf
to the sites of carboxylationwithin chloroplasts (vonCaemmerer&

Evans, 1991; Flexas et al., 2012). It is one of the four main
physiological processes limiting CO2 uptake and fixation, the
others being gs and the biochemical activity of Rubisco and RuBP
regeneration. To our knowledge, there are no land models that
currently contribute to the IPCCassessments that consider gm.This
absence reflects the challenge of adding further complexity to the
models, but also the uncertainty and technical difficulty of the
measurements required to estimate gm.

Response curves of A to intercellular [CO2] (Ci) are routinely
used to infer the maximum biochemical activity of Rubisco and
RuBP regeneration, i.e.Vc,max and Jmax.When the FvCBmodelwas
conceived, the assumption wasmade that the difference betweenCi

and the [CO2] within the chloroplast (Cc) was sufficiently small
that it could be ignored. Subsequently, improved measurement
techniques for gm have shown that it can impose a significant
limitation on A which varies with temperature, and there are
significant species differences in these responses (von Caemmerer
& Evans, 2015). If gm is not taken into account in the analysis of
A-Ci curves, the true Vc,max will be underestimated (von Caem-
merer, 2000; Niinemets et al., 2009; Sun et al., 2014). Further-
more, temperature responses of Vc,max and Jmax derived from gas
exchangemeasurements will not necessarily reflect the temperature
dependence of the underlying biochemistry alone, but will also
reflect the temperature response of gm (Medlyn et al., 2002a). The
use of apparent parameters is problematic if modelers wish to
incorporate new data on the underlying biochemistry of photo-
synthesis. For example, a recent biochemical survey of the catalytic
diversity in Rubisco revealed significant and marked variation in
key parameters across 75 species (Orr et al., 2016). These data
cannot be used directly in models without including gm in model
structures, highlighting the need for improved understanding and
model representation of gm.

Several TBMs currently use linear relationships between appar-
ent Vc,max (obtained from A-Ci curves) and leaf nitrogen to derive
Vc,max prognostically. If gm were to be incorporated into future
TBMs, new algorithms linking Vc,max to leaf N content would be
required as the Vc,max used in the relationship would need to be
derived as a function ofCc not Ci. Currently a reliance on apparent
Vcmax–leaf N relationships means that models underestimate the
amount of N partitioned to Rubisco, or put another way,
overestimate the nitrogen use efficiency of CO2 carboxylation by
Rubisco.

It is clear that an improved understanding of gm remains a critical
research area. Despite recent important progress that may simplify
prediction of gm (Tholen et al., 2012), we feel that immediate
inclusion of gm in TBMs is premature. ‘Apparent’ parameters
derived fromA-Ci response curves, which implicitly account for gm,
have been used successfully to model A in many ecosystems at the
leaf and canopy level (e.g. Bernacchi et al., 2003; Medlyn et al.,
2005; Thum et al., 2007). Until understanding and measurement
of gm matures, its inclusion in TBMs will likely drive additional
uncertainty. Furthermore, the modeling community currently has
access to a substantial dataset (albeit heavily biased to the mid-
latitudes) of ‘apparent’ parameters but almost nodata forVc,max and
Jmax derived from A-Cc curves. Including gm now would dramat-
ically shrink the amount of data available for model

No claim to original US Government works

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2017) 213: 22–42

www.newphytologist.com

New
Phytologist Viewpoints Forum 23



T
ab

le
1
M
o
d
el
re
p
re
se
n
ta
ti
o
n
o
f
th
e
re
sp
o
n
se

o
f
C
3
p
h
o
to
sy
n
th
es
is
to

ke
y
en

vi
ro
n
m
en

ta
lv
ar
ia
b
le
s
u
se
d
fo
r
th
is
st
u
d
y

B
ET

H
Y

C
LM

4
.5

ED
2

G
’D
A
Y

JS
B
A
C
H

JU
LE
S

O
-C

N

Le
af

p
h
o
to
sy
n
th
es
is
(r
es
p
o
n
se

to
C
a
)

Fa
rq
u
h
ar

e
t
a
l.
(1
9
8
0
),
n
o

T
P
U
lim

it
at
io
n

Fa
rq
u
h
ar

e
t
a
l.

(1
9
8
0
),
in
cl
u
d
es

T
P
U
lim

it
at
io
n
an

d
co
-l
im

it
at
io
n
fr
o
m

C
o
lla
tz

e
t
a
l.
(1
9
9
1
)

C
o
lla
tz

e
t
a
l.
(1
9
9
1
)
an

d
Fo

le
y
e
t
a
l.
(1
9
9
6
);
n
o

T
P
U
lim

it
at
io
n

Fa
rq
u
h
ar

e
t
a
l.

(1
9
8
0
),
n
o
T
P
U
lim

-
it
at
io
n

Fa
rq
u
h
ar

e
t
a
l.
(1
9
8
0
),

n
o
T
P
U
lim

it
at
io
n

C
o
lla
tz
e
t
a
l.
(1
9
9
1
),
T
P
U

lim
it
at
io
n
in
cl
u
d
ed

Fa
rq
u
h
ar

ty
p
e
(F
ar
q
u
h
ar

e
t
a
l.
,
1
9
8
0
)
fo
llo
w
in
g

K
u
ll
&
K
ru
ijt

(1
9
9
8
)

St
o
m
at
al
co
n
d
u
ct
an

ce
(r
es
p
o
n
se

to
at
m
o
sp
h
er
ic
V
P
D
,
C
a
so
il
m
o
is
tu
re

an
d
A
)

M
in
im

u
m

o
f
(1
)
st
o
m
at
al

co
n
d
u
ct
an

ce
n
ec
es
sa
ry

to
re
al
iz
e
m
ax

im
u
m

C
i
:C

a
an

d
(2
)
so
il
w
at
er

av
ai
la
b
ili
ty

(F
ed

er
er
,

1
9
8
2
)

Se
n
si
ti
vi
ty

to
at
m
o
sp
h
er
ic
R
H
,
C
a

an
d
A
fr
o
m
B
al
le
t
a
l.

(1
9
8
7
)

Se
n
si
ti
vi
ty

to
so
il

m
o
is
tu
re

is
fr
o
m

a
b

fa
ct
o
r
ap

p
lie
d
to

th
e

in
te
rc
ep

t
o
f
th
e
B
al
l

e
t
a
l.
(1
9
8
7
)
m
o
d
el
.

T
h
e
b
fa
ct
o
r
is

su
m
m
ed

o
ve

r
so
il

la
ye

rs
,
w
ei
g
h
te
d
b
y

ro
o
t
fr
ac
ti
o
n
in
ea

ch
la
ye

r
an

d
ca
lc
u
la
te
d

b
as
ed

o
n
so
il
m
o
is
-

tu
re

co
n
te
n
t

Se
n
si
ti
vi
ty

to
at
m
o
sp
h
er
ic
V
P
D
,
C
a

an
d
A
fr
o
m

Le
u
n
in
g

(1
9
9
5
)

W
at
er

su
p
p
ly
is
p
ro
p
o
r-

ti
o
n
al
to

so
il
m
o
is
tu
re

ro
o
t
b
io
m
as
s.
If
th
e

o
p
en

st
o
m
at
a
d
em

an
d

ex
ce
ed

s
su
p
p
ly
th
en

g s
is
lin
ea

rl
y
sc
al
ed

b
et
w
ee
n
o
p
en

an
d

cl
o
se
d
st
o
m
at
a

Se
n
si
ti
vi
ty

to
at
m
o
sp
h
er
ic
V
P
D
,

C
a
an

d
A
fr
o
m

M
ed

ly
n
e
t
a
l.

(2
0
1
1
)

Se
n
si
ti
vi
ty

to
so
il

m
o
is
tu
re

fr
o
m

b
fa
ct
o
r
ap

p
lie
d
to

th
e

sl
o
p
e
o
f
th
e
st
o
m
-

at
al
re
sp
o
n
se

(M
ed

ly
n
e
t
a
l.
,

2
0
1
1
).
So

il
m
o
is
tu
re

co
n
te
n
t
is
ex

p
re
ss
ed

as
a
fr
ac
ti
o
n
o
f
to
ta
l

p
la
n
t
av

ai
la
b
le

w
at
er

an
d
d
ep

en
-

d
en

t
o
n
so
il
ty
p
e

Es
ti
m
at
es

p
o
te
n
ti
al
A
fo
r

an
y
g
iv
en

co
n
d
it
io
n

as
su
m
in
g
a
m
ax

im
al
C
i:

C
a
re
su
lt
in
g
fr
o
m

a
m
ax

im
u
m

p
o
te
n
ti
al
g
s

W
h
en

so
il
m
o
is
tu
re

co
n
te
n
t
fa
lls

b
el
o
w

5
0
%

o
f
p
la
n
t
av

ai
la
b
le

w
at
er

m
ax

im
u
m

p
o
te
n
ti
al
g s

is
re
d
u
ce
d

lin
ea

rl
y

Se
n
si
ti
vi
ty

to
at
m
o
sp
h
er
ic
V
P
D
,
C
a

an
d
A
fr
o
m

m
o
d
ifi
ca
-

ti
o
n
o
f
Le

u
n
in
g
(1
9
9
5
)

m
o
d
el
as

p
ro
p
o
se
d
b
y

Ja
co
b
s
(1
9
9
4
)

N
o
n
-l
in
ea
r
se
n
si
ti
vi
ty

to
sp
ec
ifi
c
h
u
m
id
it
y
d
efi

ci
t

an
d
C
i.
T
h
e
la
tt
er

is
n
ec
es
sa
ry

b
ec
au

se
A
fo
r

g s
is
ev

al
u
at
ed

at
sa
tu
-

ra
ti
n
g
C
i

A
b
fa
ct
o
r
is
ap

p
lie
d
to

th
e
sl
o
p
e
o
f
th
e
st
o
m
-

at
al
re
sp
o
n
se

w
h
en

so
il

m
o
is
tu
re

co
n
te
n
t
fa
lls

b
el
o
w

5
0
%

o
f
p
la
n
t

av
ai
la
b
le
w
at
er

Le
af

p
h
o
to
sy
n
th
es
is
(r
es
p
o
n
se

to
lig
h
t)

R
ec
ta
n
g
u
la
r
h
yp

er
b
o
la
,

w
it
h
re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
la
te
d

fr
o
m

Fa
rq
u
h
ar

m
o
d
el

N
o
n
-r
ec
ta
n
g
u
la
r

h
yp

er
b
o
la
,
w
it
h

re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
-

la
te
d
fr
o
m

Fa
rq
u
h
ar

m
o
d
el

H
yp

er
b
o
lic

fu
n
ct
io
n
,

w
it
h
re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
la
te
d

fr
o
m

th
e
C
o
lla
tz

e
t
a
l.

(1
9
9
1
)
m
o
d
el
,
n
o
J m

a
x

te
rm

in
cl
u
d
ed

N
o
n
-r
ec
ta
n
g
u
la
r

h
yp

er
b
o
la
,w

it
h

re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
-

la
te
d
fr
o
m

Fa
rq
u
h
ar

m
o
d
el

R
ec
ta
n
g
u
la
r
h
yp

er
b
o
la
,

w
it
h
re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
la
te
d

fr
o
m

Fa
rq
u
h
ar

m
o
d
el

H
yp

er
b
o
lic

fu
n
ct
io
n
,

w
it
h
re
al
iz
ed

q
u
an

tu
m

yi
el
d
an

d
A
sa
t
ca
lc
u
la
te
d

fr
o
m

th
e
C
o
lla
tz

e
t
a
l.

(1
9
9
1
)
m
o
d
el
,
n
o
J m

a
x

te
rm

in
cl
u
d
ed

Ex
p
lic
it
se
p
ar
at
io
n
in
to

lig
h
t
sa
tu
ra
te
d
an

d
lim

it
ed

re
g
io
n
s:
A
sa
t
is

ca
lc
u
la
te
d
fr
o
m

Fa
rq
u
h
ar

e
t
a
l.
(1
9
8
0
).

Li
g
h
t
lim

it
ed

A
is

as
su
m
ed

to
b
e
p
ro
p
o
r-

ti
o
n
al
to

lig
h
t
ab

so
rp
-

ti
o
n
(K
u
ll
&
K
ru
ijt
,1
9
9
8
)

Le
af

p
h
o
to
sy
n
th
es
is
(r
es
p
o
n
se

to
te
m
p
er
at
u
re
)

T
em

p
er
at
u
re

d
ep

en
d
en

ce
o
f
ki
n
et
ic
co
n
st
an

ts
fo
llo
w
s
B
er
n
ac
ch
ie
t
a
l.

(2
0
0
1
).
V
c,
m
a
x
an

d
J m

a
x

ar
e
p
ea

ke
d
A
rr
h
en

iu
s

fu
n
ct
io
n
s
o
f
te
m
p
er
at
u
re

T
em

p
er
at
u
re

d
ep

en
d
en

ce
o
f

ki
n
et
ic
co
n
st
an

ts
fo
llo
w
s
B
er
n
ac
ch
i

e
t
a
l.
(2
0
0
1
).
V
c,
m
a
x

an
d
J m

a
x
ar
e
p
ea

ke
d

A
rr
h
en

iu
s
fu
n
ct
io
n
s

o
f
te
m
p
er
at
u
re
.

T
P
U
h
as

th
e
sa
m
e

te
m
p
er
at
u
re

re
sp
o
n
se

as
V
cm

a
x

Fo
llo
w
s
C
o
lla
tz

e
t
a
l.

(1
9
9
1
)
an

d
Fo

le
y
e
t
a
l.

(1
9
9
6
).
T
h
e
te
m
p
er
a-

tu
re

d
ep

en
d
en

t
ki
n
et
ic

co
n
st
an

ts
fo
llo
w

a
m
o
d
ifi
ed

A
rr
h
en

iu
s

fu
n
ct
io
n
.
A
p
h
e-

n
o
m
en

o
lo
g
ic
al
th
er
m
al

d
o
w
n
sc
al
in
g
o
f
V
c,
m
a
x

o
cc
u
rs
at

lo
w

an
d
h
ig
h

te
m
p
er
at
u
re
s
(M

ed
vi
g
y

e
t
a
l.
,
2
0
0
9
)

T
em

p
er
at
u
re

d
ep

en
d
en

ce
o
f

ki
n
et
ic
co
n
st
an

ts
fo
llo
w
s
B
er
n
ac
ch
i

e
t
a
l.
(2
0
0
1
).
V
c,
m
a
x
,

J m
a
x
an

d
R
d
ar
e

p
ea

ke
d
A
rr
h
en

iu
s

fu
n
ct
io
n
s
(M

ed
ly
n

e
t
a
l.
,
2
0
0
2
a,
b
)

T
em

p
er
at
u
re

d
ep

en
d
en

ce
o
f
ki
n
et
ic

co
n
st
an

ts
an

d
V
c,
m
a
x

fo
llo
w

an
A
rr
h
en

iu
s

fu
n
ct
io
n
,
Γ
*
an

d
J m

a
x

va
ry

lin
ea

rl
y
w
it
h
te
m
-

p
er
at
u
re

Fo
llo
w
s
C
o
lla
tz

e
t
a
l.

(1
9
9
1
),
th
e
te
m
p
er
a-

tu
re

d
ep

en
d
en

ce
o
f

ki
n
et
ic
co
n
st
an

ts
fo
l-

lo
w
s
a
Q

1
0
fu
n
ct
io
n
.

V
c,
m
a
x
h
as

a
p
ea
ke

d
te
m
p
er
at
u
re

fu
n
ct
io
n

ca
lc
u
la
te
d
fr
o
m

V
c,
m
a
x

at
2
5
°C

u
si
n
g
ve

g
et
a-

ti
o
n
-s
p
ec
ifi
c
o
p
ti
m
al

te
m
p
er
at
u
re

ra
n
g
es

T
em

p
er
at
u
re

d
ep

en
d
en

ce
o
f
ki
n
et
ic

co
n
st
an

ts
an

d
V
c,
m
a
x

fo
llo
w
s
B
er
n
ac
ch
ie
t
a
l.

(2
0
0
1
).
T
h
e
te
m
p
er
a-

tu
re

d
ep

en
d
en

ce
o
f

J m
a
x
is
d
er
iv
ed

fr
o
m

Ju
n
e
e
t
a
l.
(2
0
0
4
)

New Phytologist (2017) 213: 22–42 No claim to original US Government works

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

ViewpointsForum

New
Phytologist24



T
ab

le
1
(C
o
n
ti
n
u
ed

)

B
ET

H
Y

C
LM

4
.5

ED
2

G
’D
A
Y

JS
B
A
C
H

JU
LE
S

O
-C

N

Le
af

p
h
o
to
sy
n
th
es
is
(r
es
p
o
n
se

to
so
il
m
o
is
tu
re

co
n
te
n
t)

A
b
fa
ct
o
ri
s
ap

p
lie
d
to

V
c,
m
a
x
.T

h
e
b
fa
ct
o
r,

ca
lc
u
la
te
d
b
as
ed

o
n

so
il
m
o
is
tu
re

p
o
te
n
-

ti
al
,
is
su
m
m
ed

o
ve

r
so
il
la
ye

rs
,w

ei
g
h
te
d

b
y
ro
o
t
fr
ac
ti
o
n
in

ea
ch

la
ye

r.

A
b
fa
ct
o
ri
s
ap

p
lie
d
to

J m
a
x
an

d
V
c,
m
a
x
.
So

il
m
o
is
tu
re

co
n
te
n
t
is

ex
p
re
ss
ed

as
a
fr
ac
-

ti
o
n
o
f
to
ta
lp

la
n
t

av
ai
la
b
le
w
at
er

an
d

d
ep

en
d
en

t
o
n
so
il

ty
p
e

P
o
te
n
ti
al
A
is
m
u
lt
ip
lie
d

b
y
a
so
il
w
at
er

st
re
ss

fa
ct
o
r
re
la
te
d
to

th
e

m
ea

n
so
il
m
o
is
tu
re

co
n
ce
n
tr
at
io
n
in

th
e

ro
o
t
zo
n
e
an

d
th
e
cr
it
i-

ca
la
n
d
w
ilt
in
g
p
o
in
t
so
il

w
at
er

co
n
ce
n
tr
at
io
n
s

(C
o
x
e
t
a
l.
,
1
9
9
8
)

A
b
fa
ct
o
r
re
d
u
ce
s
V
c,
m
a
x

an
d
J m

a
x
w
h
en

p
la
n
t

av
ai
la
b
le
w
at
er

<
2
0
%

(F
ri
en

d
,
2
0
1
0
)

C
an

o
p
y
sc
al
in
g

M
u
lt
ip
le
ca
n
o
p
y
la
ye

rs
,

u
si
n
g
Se

lle
rs
’s
(1
9
8
7
)

tw
o
-s
tr
ea

m
ap

p
ro
xi
m
at
io
n
.
V
c,
m
a
x

an
d
J m

a
x
d
ec
lin
es

ex
p
o
n
en

ti
al
ly
w
it
h
in

th
e

ca
n
o
p
y
fo
llo
w
in
g
Ll
o
yd

e
t
a
l.
(2
0
1
0
)

T
h
e
m
u
lt
i-
la
ye

r
o
p
ti
o
n
ex

p
lic
it
ly

re
so
lv
es

d
ir
ec
t
an

d
d
if
fu
se

ra
d
ia
ti
o
n
fo
r

su
n
lit

an
d
sh
ad

ed
le
av

es
at

ea
ch

le
ve

l
in

th
e
ca
n
o
p
y.

B
o
th

o
p
ti
o
n
s
u
se

Se
lle
rs
’s

(1
9
8
7
)
tw

o
-s
tr
ea

m
ap

p
ro
xi
m
at
io
n
fo
r

ra
d
ia
ti
ve

tr
an

sf
er
.

N
it
ro
g
en

d
ec
lin
es

ex
p
o
n
en

ti
al
ly
w
it
h

g
re
at
er

cu
m
u
la
ti
ve

LA
I.

C
o
h
o
rt
-b
as
ed

m
o
d
el

w
it
h
th
e
n
u
m
b
er

o
f

la
ye

rs
eq

u
al
to

th
e

n
u
m
b
er

o
f
co
h
o
rt
s.

C
o
h
o
rt
s
d
if
fe
r
b
y
P
FT

d
efi

n
it
io
n
.
R
ad

ia
ti
o
n

p
en

et
ra
ti
o
n
is
d
efi

n
ed

b
y
le
af

ar
ea

in
d
ex

(L
A
I)

an
d
th
e
le
af

an
d
w
o
o
d

si
n
g
le
sc
at
te
ri
n
g

al
b
ed

o
s.
T
h
er
e
is
n
o

se
p
ar
at
io
n
o
f
su
n
lit

an
d

sh
ad

ed
fo
lia
g
e
in

th
e

d
ef
au

lt
ve

rs
io
n

B
ig
-l
ea

f
m
o
d
el
,

as
su
m
in
g

ex
p
o
n
en

ti
al
lig
h
t

an
d
n
it
ro
g
en

d
is
tr
ib
u
ti
o
n
s.

D
ai
ly
A
ca
lc
u
la
te
d

u
si
n
g
G
au

ss
ia
n

in
te
g
ra
ti
o
n
(S
an

d
s,

1
9
9
6
)

M
u
lt
ip
le
ca
n
o
p
y
la
ye

rs
,

u
si
n
g
Se

lle
rs
’s
(1
9
8
7
)

tw
o
-s
tr
ea

m
ap

p
ro
xi
m
at
io
n
.
LA

I
ty
p
ic
al
ly
=
3
.F

o
r
LA

I
<
3
,
N
(a
n
d
h
en

ce
V
c,

m
a
x
,
J m

a
x
)
is
d
is
tr
ib
u
te
d

ev
en

ly
in

th
e
ca
n
o
p
y

(a
ss
u
m
ed

to
b
e
o
p
en

).
Fo

r
LA

I
>
3
,N

fo
llo
w
s

th
e
d
is
tr
ib
u
ti
o
n
o
f
lig
h
t

(e
xp

o
n
en

ti
al
d
ec
lin
e)
.

M
u
lt
i-
la
ye

r
ca
n
o
p
y
u
si
n
g

th
e
tw

o
-s
tr
ea

m
ap

p
ro
xi
m
at
io
n
fr
o
m

Se
lle
rs
(1
9
8
7
)
so
lv
in
g

d
ir
ec
t
an

d
d
if
fu
se

ra
d
i-

at
io
n
fo
r
su
n
lit

an
d

sh
ad

ed
le
av

es
at

ea
ch

ca
n
o
p
y
la
ye

r.
In
cl
u
d
es

ex
p
o
n
en

ti
al
ve

rt
ic
al

n
it
ro
g
en

d
is
tr
ib
u
ti
o
n
o
f

p
h
o
to
sy
n
th
et
ic
ca
p
ac
-

it
y
an

d
le
af

re
sp
ir
at
io
n

M
u
lt
ip
le
ca
n
o
p
y
la
ye

rs
w
it
h
d
if
fu
se

an
d
d
ir
ec
t

ra
d
ia
ti
o
n
st
re
am

s
fo
llo
w
in
g
Sp

it
te
rs

(1
9
8
6
)
.
N
it
ro
g
en

d
ec
li-

n
es

ex
p
o
n
en

ti
al
ly
w
it
h

g
re
at
er

cu
m
u
la
ti
ve

LA
I,

af
fe
ct
in
g
V
c,
m
a
x
an

d
J m

a
x

K
ey

m
o
d
el
re
fe
re
n
ce
s

K
n
o
rr
&
H
ei
m
an

n
(2
0
0
1
)

B
o
n
an

e
t
a
l.
(2
0
1
1
,

2
0
1
2
),
O
le
so
n
e
t
a
l.

(2
0
1
3
)

M
ed

vi
g
y
e
t
a
l.
(2
0
0
9
),

M
o
o
rc
ro
ft
e
t
a
l.
(2
0
0
1
)

K
n
o
rr
&
H
ei
m
an

n
(2
0
0
1
)

B
es
t
e
t
a
l.
(2
0
1
1
),

C
la
rk

e
t
a
l.
(2
0
1
1
),

H
ar
p
er

e
t
a
l.
(2
0
1
6
)

Z
ae

h
le
&
Fr
ie
n
d
(2
0
1
0
),

Fr
ie
n
d
(2
0
1
0
)

B
ET

H
Y
,B

io
sp
h
er
e
En

er
g
y
T
ra
n
sf
er

H
yd

ro
lo
g
y
sc
h
em

e;
C
LM

4
.5
,
th
e
C
o
m
m
u
n
it
y
La

n
d
M
o
d
el
ve

rs
io
n
4
.5
;
G
’D
A
Y
,
G
en

er
ic
D
ec
o
m
p
o
si
ti
o
n
an

d
Y
ie
ld

m
o
d
el
;
JS
B
A
C
H
,
Jo
in
t
Sc
h
em

e
fo
r
B
io
sp
h
er
e

A
tm

o
sp
h
er
e
C
o
u
p
lin
g
in
H
am

b
u
rg
;J
U
LE
S,
Jo
in
t
U
K
La

n
d
En

vi
ro
n
m
en

t
Si
m
u
la
to
r;
O
-C

N
,a
n
ex

te
n
si
o
n
o
f
th
e
O
rg
an

iz
in
g
C
ar
b
o
n
an

d
H
yd

ro
lo
g
y
in
D
yn

am
ic
Ec
o
sy
st
em

s
m
o
d
el
th
at

in
cl
u
d
es

ke
y
N
cy
cl
e

p
ro
ce
ss
es
.

No claim to original US Government works

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2017) 213: 22–42

www.newphytologist.com

New
Phytologist Viewpoints Forum 25



parameterization.However, it is important to note that inclusion of
gm in models is essential if carbon isotope discrimination is to be
inferred (Ethier & Livingston, 2004; Suits et al., 2005).

Recommendation: (1) Greater process knowledge of gm will be
required before it can be included in TBMs. Specific needs include
improved understanding of variation in gm across PFTs and how it
is affected by environmental drivers such as light and temperature.

Short-term leaf level responses to environmental variables in
current model structures

Our goalwas to understand and compare the physiological responses
inside these seven TBMs (Table 1). We focused on one particular
PFT – a broad leaved deciduous tree – and defined several
environmental and physiological variables which provided standard
conditions for model intercomparison: instantaneous quantum flux
density (Q) = 1500 lmol mol�1, upper canopy sunlit leaf temper-
ature = 25°C, Ca = 380 lmolmol�1, [O2] = 210mmol mol�1,
VPD = 1 kPa, soil moisture content at field capacity and Vc,

max = 60 lmol m�2 s�1. In the following sections we present and
discuss leaf level responses to light, temperature, Ca, VPD and soil
water content.

Short-term response to light

The initial slope of the photosynthetic light response curve is
determined by the maximum quantum yield of CO2 assimilation.
For clarity, here we distinguish between the intrinsic quantum yield
(Φint), which is the initial slope of the relationship between A and

absorbed Q under non-photorespiratory conditions and the
realized quantum yield (Φreal), which we define as the photosyn-
thetic rate per unit incident light at Q = 100 lmol m�2 s�1 in our
standard conditions (Table 2 and the initial slope of the A–Q
response in Fig. 1a). TheΦint is generally an input parameter to the
models (Table 2) whereas the realized quantum yield is calculated
by the models using the FvCB equations, and depends not only on
the Φint but also on the assumed values for the Rubisco kinetic
constant Γ* (the CO2 compensation point in the absence of
mitochondrial respiration), the low light Ci, the leaf absorptance
(a), and the convexity of the light response curve (Θ). Model
variation in the choice of kinetic constants, low lightCi, a andΘ are
summarized in Table 2. The CLM assumes thatΦint is equal to the
theoretical maximum of (1�f )/8, where f = 0.15 and is used to
correct for the spectral quality of light (vonCaemmerer, 2000). As a
result, CLM has the highest Φreal (0.053 mol mol�1; Table 2;
Fig. 1a). The other models are parameterized with quantum yield
inputs that result in a calculated Φint that is below the theoretical
maximum and the resulting values forΦreal are lower than those for
CLM (Table 2). Despite a parameterization that is broadly
consistent with other models, the initial slope of the A–Q response
ofO-CN is strikingly low and results from a limitation ofA by light
harvesting at low Q (Kull & Kruijt, 1998; Table 1).

Experimental studies focused on understanding natural varia-
tion in quantum yield have shown that there is little variation in
Φint under unstressed conditions across a wide range of species,
with an average value of 0.092 mol mol�1 (Long et al., 1993;
Singsaas et al., 2001), comparable with the range ofΦint used in the
models considered here (0.07–0.106, Table 2). However,Φint can
be substantially lower in the field, particularly in stressed conditions
(Singsaas et al., 2001; Niinemets et al., 2004; Medlyn et al., 2007;

Table 2 Parameters used by the models in this study (Table 1)

BETHY CLM4.5 ED2 G’DAY JSBACH JULES O-CN

Kc at 25°C (lmol mol�1) 404.9 404.9 300 404.9 404.9 300 404.9
Ko at 25°C (mmol mol�1) 278.4 278.4 294 278.4 278.4 300 278.4
Γ* at 25°C (lmol mol�1) 42.75 42.75 41.57 42.75 42.75 40.38 42.75
Source of kinetic constants Bern Bern Foley Bern Bern Collatz Bern
JVratio 1.92 1.97 NA 2.00 1.90 NA 2.08
Jmax (lmol m�2 s�1) 115 (86) 115 (85) NA 120 (90) 114 (86) NA 126 (94)
Absorbtance 0.88 0.85 0.73 0.85 0.88 0.85 0.80
Convexity NA 0.98 & 0.95a NA 0.7 NA 0.83 & 0.93a NA
Ci at low light (lmol mol�1) 348 400 400 293 348 280 ND
Model input for quantum yield 0.28b 0.4250b 0.08d 0.26c 0.28b 0.08d 0.08d

Calculated/int 0.070 0.106 0.080 0.076 0.070 0.080 0.080
/real 0.049 0.053 0.038 0.038 0.050 0.045 0.022

The Michaelis–Menton constants of Rubisco for carbon dioxide (Kc) and oxygen (Ko), the CO2 compensation point in the absence of nonphotorespiratory
michondrial respiration in the light (Γ*) and the sources of those kinetic constants (Bern, Bernacchi et al. (2001); Collatz, Collatz et al. (1991); Foley, Foley et al.
(1996)). Where applicable the model specific ratio of the maximum electron transport rate (Jmax) to maximum photosynthetic capacity (Vc,max), the (JVratio),
was used to calculate Jmax for standard conditions, low nitrogen conditions are shown in parentheses. Leaf absorbtance; the convexity term (afor the transition
betweenRubisco and light limited and light limited and triose phosphate utilization (TPU) limitedA, respectively); the intercellular [CO2] (Ci) at low light. Three
model inputs were used to parameterize quantum yield (bquantum yield of electron transport based on absorbed light, cquantum yield of electron transport
basedon incident light and dquantumyieldof photosynthesis basedonabsorbed light andmeasuredundernonphotorespiratory conditions (/int)).Herewealso
show the calculated intrinsic quantum yield for all models to enable model comparisons. The modeled realized quantum yield under our standard conditions
whenQ = 100 lmol mol�1 (/real) is the initial slope of the leaf level A-Q response shown in Fig. 1(a) for our standard conditions where Vc,max was set to
60 lmol m�2 s�1 (and 45 lmol m�2 s�1 for low nitrogen conditions) and where temperature = 25°C, atmospheric [O2] = 210mmolmol�1,
Ca = 380 lmol mol�1, VPD = 1 kPa and soil moisture content was at field capacity. NA, not applicable; ND, no data.
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Niinemets & Keenan, 2014). As discussed earlier, the Φreal in
models depends on several assumptions, not just the Φint,
highlighting the need to better parameterize and test modelled
light responses with data from field conditions. For example, most
existing measurements have been made within a narrow temper-
ature range (20–30°C) and the scarcity of data collected at low
temperature has been highlighted as an important driver of model
uncertainty at high latitudes (Dietze, 2014).

Leaf level light-saturated CO2 uptake (Asat) varies considerably
between models (Fig. 1a). The variation in modeled Asat is
driven by differences in prescribed Rubisco kinetic constants and
their temperature dependencies (see later and Table 2), as well as
the Ci, which is dependent on the choice of stomatal model. The
inflection point of the light response curve marks the transition
between light limitation and light saturation of A. There is a
wide range in the Q at which A becomes light saturated and
therefore the greatest model divergence in A occurs when some
models have light saturated A and others do not (i.e. Q = 400–
800 lmol m�2 s�1, Fig. 1). In addition to differences in the
model representation of light limited and light saturated A,
variation in the transition phase is attributable to model
structure (Table 1), and when present, parameterization of the
convexity term (Θ, Table 2), which determines the relative
influence of Φreal or Asat on A at a given Q.

Moving from the leaf to the canopy level, responses to
irradiance (Fig. 1b–d) are not only dependent on the factors
discussed earlier but also on the method used to scale physiology
from the leaf to the canopy level, the representation of the light
environment within the canopy, and the partitioning of foliage
between sunlit and shaded leaves (Gu et al., 2002; Mercado
et al., 2009). As a result, canopy scaling exacerbates existing
differences between the TBMs and introduces new structural
variation that further diversifies model output (Fig. 1b–d).
Canopy scaling is discussed in detail later.

Recommendation: (2) Modeled responses of photosynthesis to
light need to be parameterized and evaluated against data fromfield
conditions, particularly at low temperature.

Do not mix and match

One issue that emerged here, but is relevant throughout this
paper, is the need to avoid piecemeal approaches to model
parameterization. For example, we need to carefully and
consistently use kinetic constants and temperature response
functions because the models are highly sensitive to them. Any
constants and functions used when deriving photosynthetic
parameters from data have to be the same ones used in the model.
For example, if a value of Vc,max at 25°C is used in a model, that
model must use the same Michaelis–Menten constants (Kc and
Ko) and Γ* (e.g. see Table 2), and the associated temperature
dependencies, that were used to estimate Vc,max from the original
A–Ci response curve as well as the same temperature response
function used to scale Vc,max from the measurement temperature
to 25°C. This problem, that derived parameters depend on the
equations used to derive them, introduces error when trying to
use the parameters to perform meta-analyses or calibrate models
(Medlyn et al., 2002a,b; Dietze, 2014). As we make progress to
provide models with richer data sets for use in model
parameterization and evaluation, we need to archive our raw
gas exchange data so that, for example, new kinetic constants
and temperature response functions can be applied to old data,
maintaining its value as understanding advances. The estimation
of quantum yield provides another example where the assembly
of parameters (e.g. Φint, a, Γ*, Θ) and approaches (e.g.
estimation of low light Ci) is not coordinated and where
archived data would be useful.

Recommendations: (3) Models need to make careful and
consistent use of kinetic constants and temperature response
functions. (4) Physiologists should archive their raw data to enable
coordinated parameterization and the preservation of their data for
future analysis.

Short-term response to temperature

The temperature response of A is complex and dependent on
additional variables such as Q and Ci (Fig. 2). The Ci in turn
depends on gs and hence VPD, such that the temperature and VPD

(a) (b)

(c) (d)

Fig. 1 The response of leaf level (a) and canopy level (b–d) photosynthesis
(A) to instantaneous quantum flux density (Q) for three different values of
leaf area index; LAI = 1 (b), LAI = 3 (c), and LAI = 7 (d) for seven models;
BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark green)
G’DAY (black), O-CN (light green). Plots show responses in our standard
conditions for a single plant functional type, a generic temperate broad
leaved deciduous tree. Where maximum carboxylation rate of Rubisco
(Vc,max) is 60 lmol m�2 s�1. Vapor pressure deficit (VPD)was fixed at 1 kPa,
soil moisture content was fixed at field capacity, and atmospheric [O2] at
210mmol mol�1, atmospheric CO2 concentration (Ca) at 380 lmol mol�1.
Sunlit upper canopy leaf temperature was fixed at 25°C.
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response of gs also impacts the shape of the temperature response of
A (Medlyn et al., 2002a; Lin et al., 2012). The model by Farquhar
et al. (1980) suggests thatA is Rubisco-limited at low temperature –
but note that TPU limitation can limit A in some species at low
temperature (Sage & Sharkey, 1987). The decline in A at high
temperature (Fig. 2) can be brought about by the temperature
dependence of Jmax and the strong increase in photorespiration and
mitochondrial respiration with increasing temperature (Farquhar
et al., 1980; von Caemmerer, 2000). High temperature limitations
on Rubisco activase could also cause decline in A but this
mechanism is currently absent from all these models (Salvucci &
Crafts-Brandner, 2004a,b; Sage & Kubien, 2007). The steep
decline of A at temperatures above 30°C in the Farquhar et al.
(1980) model is largely driven by the temperature dependence of
Jmax. This effect needs to be treated with some caution as it may be
due to irreversible inhibition in the in vitro system, from which the
function was derived. June et al. (2004) provided a simpler
empirical equation for fitting the temperature dependence of Jmax.
The temperature dependence of A is also driven by the choice of
kinetic parameters and their temperature dependencies as discussed
earlier. Some TBMs use spinach (Jordan & Ogren, 1984) or
tobacco (Bernacchi et al., 2001) temperature response functions for
Vc,max for all species. However, as there are important differences in
the response ofVc,max to temperature amongwarmand cool climate

plant species (Kattge & Knorr, 2007; Galm�es et al., 2015),
continued acquisition of temperature response functions from
different biomes is critically important. The temperature optimum
ofA (Topt) depends on environmental conditions such asQ andCa,
with Topt being more pronounced at high Q and Ca (e.g. compare
Fig. 2a,c with 2b,d). Here, two models stand out for their
temperature responses; unlike the majority of models that show
an optimum ~ 24.5°C, ED2 has an emergent temperature
optimum at 16°C, despite a Vc,max optimum at 39°C, and
JSBACH shows no high temperature limitation on A (Table 1;
Fig. 2). It is usual forTopt to shift to a slightly higher temperature as
Ca rises (Long, 1991) because at highCa the rate of photorespiration
is reduced, thereby extending the temperature range where positive
CO2 assimilation occurs.TheCO2 effect onTopt is evident in Fig. 2
in a number of the models at both the leaf and canopy level. Here,
elevating Ca from 380 to 550 lmol mol�1 shifts the Topt up by
~ 2°C (Fig. 2b,d). Two models do not show this shift in Topt:
JSBACHhas noTopt, and theTopt for ED2 remains at 16°Cdespite
the increase in Ca from 380 to 550 lmol mol�1.

Current empirical models predict the response of gs to temper-
ature based on a relationship between gs and A that is modified by
VPD. This approach is successful in many cases (e.g. Duursma
et al., 2014) although the mechanisms underlying the response
remain poorly understood (Mott, 2009; Busch, 2013). In addition,
there is evidence that the correlation between gs and A breaks down
at high temperatures (> 35°C) in some species, with stomata
remaining open while A goes to zero (e.g. Lu et al., 2000; Scafaro
et al., 2012; von Caemmerer & Evans, 2015; Teskey et al., 2015;
Slot et al., 2016). Presumably this response allows the plant to
maintain leaf temperatures at nondamaging levels via transpira-
tional cooling. It is not known how widespread this response is
(Teskey et al., 2015) nor to what extent it occurs in the field. Slot
et al. (2016), for example, find this response in glasshouse-based
measurements but not in field trees.

Recommendations: (5) Physiologists need to continue measuring
temperature response functions forVc,max and Jmax. (6)More field-
based research into the independent temperature response of gs is
required to better understand the mechanism underlying the
response of A to high temperatures.

Short-term response to CO2

At low Ca, when A is limited by the amount of active Rubisco
available for carboxylation (Vc,max), A increases with rising Ca for
two reasons: (1) the affinity of Rubisco for CO2 is low, and
therefore increasing the substrate concentration increases carboxy-
lation rates; (2) CO2 competitively inhibits the oxygenation
reaction, reducing CO2 losses associated with photorespiration
(Fig. 3). At higher Ca – i.e. above the inflection point of the A–Ca

curve (most notable in the leaf level responses shown in Fig. 3a,b)
– A becomes limited by the supply of ATP and NADPH to
regenerate the CO2 acceptor RuBP. At this point A will still rise
with increasing Ca, but the CO2 responsiveness (the increase in A
for a given increase in Ca) is reduced as further increases in A are
attributable solely to the inhibition of the oxygenation reaction,

(a) (b)

(c) (d)

Fig. 2 The response of leaf level (a, b) and canopy level (leaf area index
(LAI) = 3; c, d) photosynthesis (A) to leaf temperature at two atmospheric
[CO2] (a, c, 380 lmol mol�1; b,d, 550 lmol mol�1) for sevenmodels; BETHY
(red), CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark green) G’DAY
(black), O-CN (light green). Plots show responses in our standard conditions
for a single plant functional type, a temperate broad leaved deciduous tree.
Where maximum carboxylation rate of Rubisco (Vc,max) is 60 lmol m�2 s�1.
Vapor pressure deficit (VPD) was fixed at 1 kPa, soil moisture content was
fixed at field capacity, and atmospheric [O2] at 210mmol mol�1,
instantaneous quantum flux density (Q) at 1500 lmol m�2 s�1. Sunlit upper
canopy leaf temperature was fixed at 25°C.
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which increases the availability of ATP and NADPH for RuBP
regeneration (Long, 1991; Long et al., 2004).

The shape of the A–Ca response curve is a critical model feature
that determines the ability of the terrestrial carbon sink to respond
to rising Ca and it is affected by model structure and parameter-
ization (Fig. 3; Tables 1, 2). Variation in the initial slope of the A–
Ca response is attributable toCi and the choice of kinetic constants.
For this example of a broad leafed deciduous tree PFT in our
standard conditions, all models show that light-saturatedA appears
to be Rubisco limited (RuBP saturated) below a Ca of
500 lmol mol�1 (Fig. 3). As a result the CO2 responsiveness of A
below aCa of 500 lmol mol�1 is similar for allmodels.However, as
Ca rises above 500 lmol mol�1 differences in model structure and
parameterization lead to substantial variation in CO2 responsive-
ness. Three models (CLM, ED2 and JULES) stand out for smooth
response curves that lack a clear inflection point (most noticeable in
Fig. 3a). All three models adopt the co-limitation approach
described by Collatz et al. (1991) which smooths transitions
between Rubisco limited and RuBP limited A (Collatz et al., 1991;
Foley et al., 1996; Clark et al., 2011; Oleson et al., 2013; Table 1).
This approach contributes to the greater CO2 responsiveness at
higher Ca observed in CLM and JULES (Fig. 3a). In addition, the
four models that lack this smoothing function (BETHY, G’DAY,
JSBACH and O-CN) have a marked inflection point between

Rubisco limited and RuBP limited A, but the Ca at which this
inflection occurs spans a large range (~ 300 lmol mol�1; Fig. 3)
contributing to the variation in CO2 responsiveness above
500 lmol mol�1. The variation in Ca at which the inflection point
occurs has several causes, but the main drivers of this variation are
the choice of kinetic constants (~ 60 lmol mol�1, Table 2), the
JVratio, which for a fixed Vc,max sets the inflection point Ci

(~ 125 lmol mol�1, Table 2) and the stomatal model, which
determines the Ca at which the inflection point Ci is reached
(~175 lmol mol�1; Table 1).

As Vc,max is reduced (Fig. 3b,d), the responses of A to changes in
Ca are qualitatively similar but model divergence is constrained.
Model variation in canopy level responses to rising Ca (Fig. 3c,d) is
also attributable to different approaches to canopy scaling as
discussed later. The differences seen here inCO2 responsiveness are
substantial – highlighting the impact of different model represen-
tations of the FvCBequations, stomatalmodel choices and the need
to better understand controls on the inflection point of the A–Ca

response. The Ca at which the inflection point occurs drives
uncertainty in the CO2 stimulation of A at the Ca that will be
experienced in the second half of the century, and it is at this higher
Ca where model uncertainty is greatest. This model divergence in
inflection point probably contributes to the model differences in
GPP reported in the recent Free Air CO2 Enrichment (FACE)
model-intercomparison project (Zaehle et al., 2014).

Recommendation: (7) We need improved understanding and
model evaluation of the controls on the inflection point of CO2

response curves.

Short-term response to VPD

Increasing VPD causes stomatal closure, which decreases Ci. The
magnitude of the decrease in A resulting from lower Ci is
determined by the shape of the A–Ci response as described earlier
and shown in Fig. 3. Figure 4 shows the response of A to VPD;
model divergence increases with rising VPD, largely due to
differences in the parameterization of VPD sensitivity among
models. The strong sensitivity of the CLM seen in Fig. 4 is due to
the use of RH in themodel formulation, and the fact that RHmust
drop dramatically to obtain increasing VPD with constant
temperature, as shown in this plot. There are some models, of
which JSBACH in this study is an example, that do not incorporate
a stomatal response to RH or VPD (Table 1; Fig. 4). Such
formulations were necessary when driving data sets for atmospheric
humidity were not available. Given advances in the understanding
of stomatal responses and the availability of appropriate driver
datasets, stomatal response to RH or VPD should be adopted.
However, we believe that formulations involving VPD, such as
those adopted by ED2, G’DAY and JULES (Table 1) are
theoretically preferable because, unlike RH, VPD is directly
proportional to water loss, more closely reflects stomatalmechanics
(e.g. Aphalo & Jarvis, 1991; De Beeck et al., 2010), and is strongly
linked to productivity (Lobell et al., 2014; Ort & Long, 2014). In
addition, formulations involving VPD, rather than RH, will likely
be better able to project the response of vegetation to future climate

(a) (b)

(c) (d)

Fig. 3 The response of leaf level (a, b) and canopy level (leaf area index
(LAI) = 3; c, d)photosynthesis (A) toatmospheric [CO2] (Ca) in sevenmodels;
BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark green)
G’DAY (black), O-CN (light green). Panels show responses in our standard
conditions for a single plant functional type, a temperate broad leaved
deciduous tree where maximum carboxylation rate of Rubisco (Vc,max) =
60 lmol m�2 s�1 (a, c) andwhenVc,max = 45 lmol m�2 s�1 (b, d). The vapor
pressure deficit (VPD) was fixed at 1 kPa, soil moisture content at field
capacity and instantaneous quantumflux density (Q) at 1500 lmol m�2 s�1,
atmospheric [O2] at 210mmol mol�1. Sunlit upper canopy leaf temperature
was fixed at 25°C.
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scenarios, because RH is predicted to change little in the future
whereas VPD will increase with warming (Sato et al., 2015).

Similar coupled gs–A models can also be developed from
optimization principles. Cowan & Farquhar (1977) proposed that
stomatal behavior is optimal when A less the cost of transpiration is
maximized, and a number of authors have shown that this theory
leads to a relationship between gs andA that is similar in behavior to
empirical formulations (e.g. Hari et al., 1986; Katul et al., 2010;
Medlyn et al., 2011). Optimization approaches have the advantage
of being based in theory, yieldingmeaningful parameter values, and
providing gs responses to future environmental conditions where
we lack robust measurements, and we encourage their use.
However, we also caution that optimization can lead to physio-
logically incorrect behavior in some circumstances – such as
incorrect CO2 responses, and instability near the transition
between Rubisco-limited and RuBP regeneration-limited
A – implying that simple, empirically verified equations based on
optimization may be more reliable than direct application of
numerical optimizations that are also dependent on the careful
application of model constraints within TBMs and the optimiza-
tion approach used.

Large-scale parameterization of stomatal models has been data-
limited, with models typically using one nominal set of parameter
values for all C3 vegetation. A major advance in this area was made
by Lin et al. (2015), who collated a substantial new stomatal
conductance database and demonstrated a predicted response of
the stomatal slope parameter (g1) to temperature and consistent
differences in g1 among broadly defined PFTs. This dataset
provides a valuable foundation for stomatal model parameteriza-
tion. However, the coverage of this database is still limited. There is
still relatively little information about how g1 varies among species
or genotype, and almost no information on acclimation or
plasticity in these parameters in response to abiotic or biotic factors
(Way et al., 2011). Models are also sensitive to the minimum
stomatal conductance parameter, g0, particularly under low light
and high VPD conditions (Bauerle et al., 2014), but this parameter
is poorly quantified.

Recommendations: (8) Models should adopt approaches that
include formulations where gs responds to VPD. (9)Weneedmore
information about how g1 and g0 (or their equivalents) vary among
PFTs and in response to environmental drivers.

Short-term response to soil moisture content

Soil moisture availability is a key constraint on A. As soil moisture
availability decreases, stomates close, decreasing Ci, and eventually
preventing A and transpiration (Fig. 5). Drought can also reduce
the biochemical capacity forA, expressed as lowerVc,max and Jmax in
models, but the relative balance of these stomatal and biochemical
limitations is subject to significant debate (Chaves et al., 2009).
Current approaches to modeling the effects of soil moisture on A
can be classified into several types: empirical reduction factors;
hydraulic limitations; physiological approaches; and a simple
supply constraint approach (BETHY). The latter assumes that
plant transpiration cannot exceed the potential supply of soil water
and that plants can photosynthesize provided there is a sufficient
water supply (Table 1).

The empirical reduction factor approach involves multiplying
parameters by a soil water stress factor (typically denotedb, ranging
from 0 to 1) when soil moisture falls below a given model-
dependent threshold. Three of the models in our sample used this
approach (CLM, G’DAY and O-CN, Table 1 and Fig. 5).
However, there is disagreement among models as to whether the
b factor should be applied to the stomatal slope parameter,
apparent Vc,max, or both (De Kauwe et al., 2013). Here, all three
models applied the b factor to stomatal model parameters, either
the slope (G’DAY and O-CN) or the intercept (CLM), and also to
the photosynthetic parameters Vc,max (CLM) or Vc,max and Jmax

(G’DAY and O-CN; Table 1). Increasing evidence suggests that
both stomatal slope and Vc,max are affected by low soil moisture,
with the reduction in apparent Vc,max possibly in part due to lower
gm (Keenan et al., 2010; Egea et al., 2011; Zhou et al., 2013).
Several TBMs do include both limitations, but theb factor is tied to
the soil water content and therefore models cannot capture the
impact of potentially different trajectories of drying and rewetting
episodes (Williams & Xia, 2009).

(a)

(b)

Fig. 4 The response of leaf level (a) and canopy level, where leaf area index
(LAI) = 3 (b) photosynthesis (A) to vapor pressure deficit (VPD) for seven
models; BETHY (red), CLM (blue), ED2 (cyan), JSBACH (pink), JULES (dark
green) G’DAY (black), O-CN (light green). Plots show responses in our
standard conditions for a common plant functional type, a temperate broad
leaved deciduous tree. Where maximum carboxylation rate of Rubisco
(Vc,max) = 60 lmol m�2 s�1. Soil moisture contentwas fixed at field capacity,
instantaneous quantumflux density (Q) at 1500 lmol m�2 s�1, atmospheric
CO2 concentration (Ca) at 380 lmol mol�1, atmospheric [O2] at
210mmol mol�1. Sunlit upper canopy leaf temperature was fixed at 25°C.

New Phytologist (2017) 213: 22–42 No claim to original US Government works

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

ViewpointsForum

New
Phytologist30



The hydraulic approach offers a number of theoretical advan-
tages over the b-factor approach. Stomatal conductance is modeled
as a function of leaf water potential (wleaf), which is calculated from
soil moisture potential wsoil and plant and soil hydraulic conduc-
tances. There may be a threshold minimum wleaf (Williams et al.,
1996) or a sigmoidal functional dependence (Tuzet et al., 2003).
Implementations also differ on whether responses to VPD are
captured by the responses to wleaf (Williams et al., 1996; Tuzet
et al., 2003) or whether an additional VPD response is also needed
(Bonan et al., 2014). The hydraulic approach is appealing to plant
physiologists because it reflects some of the key mechanisms
thought to influence plant response to drought (Leuning et al.,
2004). Because soil hydraulic conductance is assumed to vary with
wsoil this approach also incorporates a dynamic weighting of soil
layers whereby lower soil layers becomemore important as drought
progresses (De Kauwe et al., 2015). Furthermore, there is evidence
that the photosynthetic response to soil moisture can depend on
plant leaf area (e.g. Kelly et al., 2015), an effect that is captured by
the hydraulic approach but not the b-factor approach. The chief
disadvantage of the hydraulic approach is that it requires additional

parameters to represent plant hydraulic conductance and stomatal
dependence on leaf water potential. These parameters are not well
quantified and can lead to additional uncertainty.

The physiological approaches are based on an understanding of
stomatal function and suggest that both metabolic and hydraulic
stomatal regulation involves the hormone abscisic acid (ABA),
known to promote tolerance against abiotic stress (Jones, 2016).
Wilkinson&Davies (2002) proposed a coordinatedmodel of plant
responses to stress whereby water stress sensed by the root system
stimulates ABA biosynthesis. This signal is then communicated to
the guard cells which subsequently induce stomatal closure and
reduce water loss. Both roots and leaves synthesize ABA and
increasing concentrations of xylem ABA correlate with stomatal
closure (Sauter et al., 2001; Wilkinson & Davies, 2002; Christ-
mann et al., 2007).

There are few mathematical descriptions of stomatal control
including xylem ABA signaling (Tardieu & Davies, 1993; Dewar,
2002; Huntingford et al., 2015). Tardieu & Davies (1993),
combined hydraulic and chemical signaling control of stomatal
functioning. The approach of Dewar (2002) is an extension of this
approach that also considers xylem embolism and the possible role
of combined leaf hydraulic and chemical signaling in addition – or
as a possible alternative – to existing root signals.Huntingford et al.
(2015) revisited the work by Dewar (2002) and provided a gs
formulation which depends on only four variables: soil water
content, Ca, evapotranspiration and net A. This is an exciting
approach, however there is an acute need formore empirical data to
be able to parameterize and evaluate approaches of estimating gs
that include ABA.

The TBMs presented here showed dramatic divergence in the
response of A to drought (Fig. 5), with the canopy level responses
mostlymirroring the responses seen at the leaf level.Whilstmuchof
this divergence could be explained by the different approaches
taken by each model (Table 1), the method used to estimate soil
water availability also varies between models. Some models
estimate soil water availability using soil moisture content (e.g.
O-CN) and others using wsoil (e.g. CLM). Since soil water
retention curves are highly nonlinear and dependent on soil type,
this can be a major source of model divergence (Medlyn et al.,
2016). From aphysiological perspective,wsoil is thought to bemore
relevant to plant function than soil moisture content. However, the
use of wsoil can result in unrealistically steep responses to the onset
of drought unless it is dynamically averaged over the soil profile (De
Kauwe et al., 2016).

Uncertainties in root and stomatal responses are major drivers of
TBM uncertainty in predicted Net Primary Production across a
wide latitudinal gradient (De Kauwe et al., 2013; Dietze, 2014).
Improved model representation of drought responses will require
evaluation of underlyingmechanisms as well as comparison of high
level model outputs to ecosystem fluxes during drought periods.
Evaluation of the response of key variables associated with
alternative stomatal models against field data is needed. This is
challenging as evaluation of alternative mechanisms (e.g. the
hydraulic and physiological approaches) requires field level
manipulation or exploitation of natural gradients and weather
events coupled with substantial campaigns that include parallel

(a)

(b)

Fig. 5 The response of leaf level (a) and canopy level, where leaf area index
(LAI) = 3 (b) photosynthesis (A) to soil water content expressed as a fraction
of field capacity for seven models; BETHY (red), CLM (blue), ED2 (cyan),
JSBACH (pink), JULES (dark green) G’DAY (black), O-CN (light green). Plots
show responses in standard conditions for a single plant functional type, a
temperatebroad leaveddeciduous tree.Wheremaximumcarboxylation rate
of Rubisco (Vc,max) = 60 lmol m�2 s�1). Vapor pressure deficit (VPD) was
fixed at 1 kPa, instantaneous quantum flux density (Q) at
1500 lmol m�2 s�1, atmospheric CO2 concentration (Ca) at
380 lmol mol�1, atmospheric [O2] at 210mmolmol�1. Sunlit upper canopy
leaf temperature was fixed at 25°C.
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measurement of many leaf parameters (e.g. wleaf, in situ gas
exchange and Vc,max) in coordination with plant hydraulic
parameters (e.g. soil moisture content, wsoil, sap flux, hydraulic
conductivity and cavitation vulnerability).

Recommendations: (10) Models should respond to soil water
availability throughwsoil, but variation inwsoil with soil depthneeds
to be incorporated. (11) We need rich data sets of coordinated
physiological and environmental measurements to enable evalua-
tion of alternative modeling approaches for the representation of
the response of A to drought.

Scaling physiology

Earlier, we focused primarily on leaf level responses to environ-
mental and climate change drivers, but amajor challenge formodel
representation is how to scale process knowledge of physiology and
leaf level parameterization through time (seasonal change), verti-
cally through the canopy, spatially across the landscape, and also to
represent photosynthetic acclimation to rising temperature andCa.
These issues are discussed below.

Effects of day length and season

Photosynthesis responds to short-term environmental changes, but
it also shows broad, regular seasonal changes, especially in higher
latitudes. In these regions,A halts in the autumn as leaves senesce in
deciduous species and decreases as Vc,max is down-regulated during
the cold winter months in evergreens. Much of this temporal
scaling of A is captured in TBMs through phenology models and
the direct temperature effects on Vc,max.

While temperature may be a major factor in driving seasonal
patterns of A, other environmental cues may be as, or even more,
important. Photoperiod is known to have strong effects on leaf
phenology, which has indirect effects on A, but has not generally
been considered to affect A directly (Way &Montgomery, 2015).
However, Bauerle et al. (2012) found that photoperiod was a
stronger predictor of seasonal changes in both Vc,max and Jmax than
air temperature. In that data set, Vc,max peaked immediately after
the summer solstice, and declined steadily into the autumn,
although air temperatures did not peak until a month or more after
the solstice.When this effect was accounted for with a photoperiod
correction ofVc,max inCLM, themodel’s ability to capture seasonal
patterns of atmospheric Ca was improved (Bonan et al., 2011;
Bauerle et al., 2012). Other papers have noted that incorporating a
photoperiod scalar with direct effects on Vc,max improves estimates
of seasonal carbon fluxes in eddy flux studies, supporting a role for
photoperiod in modulating Vc,max (Medvigy et al., 2013; Stoy
et al., 2014). In controlled environments, photoperiod is tightly
correlated with total leaf protein content, suggesting a tradeoff
between the value of protein and the cost of its maintenance and
provides a possible mechanistic explanation for the impact of
photoperiod onVc,max (Hannemann et al., 2009). However, not all
PFTs show the same response to changes in day length and it is
possible that photoperiod corrections may be capturing leaf age

effects (Medlyn et al., 2002b, 2007; Busch et al., 2007; Lin et al.,
2013; Stinziano et al., 2015). In the tropics, day-length is essentially
constant and therefore photoperiod scalars will fail to capture the
well documented photosynthetic seasonality associated with
tropical evergreen forests (Doughty & Goulden, 2008). Recent
work has shown that higher canopy level photosynthetic
capacity associated with new leaf flushing can explain the seasonal
dynamics of CO2 uptake in Amazonian evergreen forests (Wu
et al., 2016a).

Recommendations: (12) We need to elucidate the mechanism
underlying the use of photoperiod scalars tomodify photosynthetic
parameterization. (13) In order to capture photosynthetic season-
ality in tropical evergreen forests, we need to develop
new approaches that are capable of coupling prognostic leaf
phenology to photosynthetic capacity.

Acclimation to temperature

The short-term photosynthetic responses to temperature covered
earlier are themselves sensitive to the temperatures experienced
over longer timescales (days to weeks). This longer-term
adjustment, known as temperature acclimation, has been widely
reported and recently reviewed (Smith & Dukes, 2013; Way &
Yamori, 2014). The phenomenon is commonly observed as a
shift in the optimum temperature for A (Topt), which can
maximize the A at the growth temperature (Berry & Bj€orkman,
1980; Kattge & Knorr, 2007; Yamori et al., 2014). The
mechanistic process of acclimation and its timescale have not
been well described, either within or across species. At the
slowest and broadest scales, the process of acclimation is
constrained by leaf structure and rates of leaf development and
turnover. Leaves that develop under one set of conditions are
constrained by their existing anatomy from adjusting fully to a
new set of conditions (Campbell et al., 2007). Within a leaf,
acclimation rates are driven by the rates at which biochemical
and physiological processes can adjust.

At the leaf scale, acclimation results from temperature-driven
changes in enzyme abundances and isoforms, and of membrane
composition (Yamori et al., 2014). At low growth temperatures,
the abundance of Rubisco and other photosynthetic enzymes
increases, and some plants produce enzymes with different
isoforms, which have different kinetic constants. Under high
growth temperatures, plants are thought to increase the stability
of the thylakoid membrane, and their capacity for increased
electron transport. Also, some plants can produce a more heat-
stable form of Rubisco (Crafts-Brandner et al., 1997), and
increase expression of heat-shock proteins. Growth temperature
also affects the temperature response of respiration, with
consequences for net A (e.g. Atkin & Tjoelker, 2003; Way &
Yamori, 2014); although the acclimation of respiration may
affect plant growth more strongly than that of A for some species
(Way & Oren, 2010), this topic lies beyond the scope of this
paper and has recently been considered elsewhere (Atkin et al.,
2015).
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While long-term acclimation of A to temperature has been
observed inmany species and studies, fewer studies have quantified
acclimation at the process level i.e. Vc,max and Jmax. From observed
responses, one may expect seasonal variation in the temperature
dependence of Jmax and changes in the JVratio. Some confirmation
of this was provided byKattge&Knorr (2007)who reanalysed data
from 36 (primarily temperate) plants and showed that the
optimum temperature of Vc,max and Jmax increased by 0.44°C
and 0.33°C per 1°C increase of growth temperature, and that the
JVratio at 25°C significantly decreased with increasing growth
temperature. However, temperature acclimation may result from
different processes in different species: Vc,max and Jmax measured at
25°C were, on average, unaffected by growth temperature across
tree species (Way & Oren, 2010) and showed a wide variation in
responses across a broad range of plant growth forms (Way &
Yamori, 2014).

The representation of Vc,max and Jmax acclimation based on
Kattge & Knorr (2007) has been included in some models (e.g.
Raddatz et al., 2007; Ziehn et al., 2011; Arneth et al., 2012;
Lombardozzi et al., 2015), and recent work suggests that incorpo-
ration of both photosynthetic and respiratory acclimation can alter
projections of land carbon storage by 10–40 Pg by the end of the
century (Lombardozzi et al., 2015; Smith et al., 2016). However,
there is clear indication that species differ in the degree to which
they acclimate to temperature (e.g. Yamori et al., 2014), and no
formulations have yet been developed that capture this variation
across a broad range of PFTs.

Researchers have recorded acclimation of different species
occurring over periods lasting from 2 d to nearly 2 wk (e.g.
Slatyer & Ferrar, 1977; Bj€orkman & Badger, 1979; Gunderson
et al., 2010). Very limited evidence suggests that the exact
timescale of acclimation may not be critical for modeled
estimates of GPP as long as it is in a range of c. 3–45 d (Dietze,
2014) but the issue needs to be evaluated more thoroughly
before that assumption is widely adopted. A specific timescale
does need to be specified in models to calculate growth
temperature, and is straightforward to identify experimentally.
Kattge & Knorr (2007) assumed an acclimation period of 30 d,
using an average of day and night temperatures, but it is clear
that the bulk of biochemical and physiological adjustments
happen over a shorter time period.

Recommendations: (14) Physiologists need to measure thermal
acclimation of the photosynthetic traits (e.g. Vc,max and Jmax) that
drivemodel outputs rather than thermal acclimation ofA. (15)We
need a better understanding and model representation of thermal
acclimation across biomes, specifically the capacity and degree to
which species can acclimate, the timescales over which acclimation
occurs, and the degree to which temperature acclimation is affected
by other environmental variables.

Acclimation to rising [CO2]

Photosynthetic acclimation to elevated Ca is the reduced
stimulation of A that often occurs following long-term growth

at elevated Ca (Ainsworth & Rogers, 2007). It is the result of a
reduction in Vc,max (Rogers & Humphries, 2000; Long et al.,
2004; Ainsworth & Long, 2005; Ainsworth & Rogers, 2007;
Leakey et al., 2009). Notably, the reduction in photosynthetic
capacity typically reduces the magnitude of the stimulation of A
without completely eliminating it (Leakey et al., 2009). The
acclimation response reduces allocation of N to Rubisco, thereby
allowing N resources to be combined with the greater carbon
supply from stimulated A at elevated Ca (Drake et al., 1997;
Long et al., 2004). In fact, a meta-analysis of Ainsworth & Long
(2005) found that the decrease in leaf N content observed at
elevated Ca was largely attributable to the decrease in Rubisco.
Consequently, the magnitude of any photosynthetic acclimation
is tightly coupled to the carbon and nitrogen status, and the
source-sink balance, of the plant (Medlyn et al. 1999; Rogers
et al., 1998, 2009; Ainsworth et al., 2004; Ainsworth & Rogers,
2007; Leakey et al., 2009). For example, in severely N limited
systems, acclimation is strong and can be attributed to a
nonspecific reduction in leaf N content (Warren et al., 2015), a
mechanism that is currently accounted for by some TBMs in
this study (Table 1). Acclimation is also strong when the capacity
of sinks to use photoassimilate is low, leading to accumulation of
leaf carbohydrates and induction of sugar signaling pathways
that reduce Rubisco content (Moore et al., 1999). There is
evidence for variation in the acclimation response among
functional groups that differ in the processes limiting A at
ambient Ca (Ainsworth & Rogers, 2007). Acclimation is rarely
observed in plants that have Rubisco-limited A at current Ca and
elevated Ca. As Ci rises above the inflection point on an A–Ci

response curve, A will become RuBP regeneration-limited, and
carboxylation capacity will exceed requirements. In this situa-
tion, plants grown at elevated Ca typically exhibit photosynthetic
acclimation and reduce their investment in Rubisco (Ainsworth
& Rogers, 2007).

The TBMs in this review either do not include photosyn-
thetic acclimation to elevated Ca or link it to a nonspecific
reduction in leaf N content that is focused on reduced N
availability and constrained C : N stoichiometry (Luo et al.,
2004). No models currently include representation of the
physiological acclimation to elevated Ca described above and
widely reported in FACE studies (Long et al., 2004; Ainsworth
& Long, 2005; Ainsworth & Rogers, 2007; Leakey et al., 2009).
Recent analysis has shown that failing to account for photo-
synthetic acclimation at elevated Ca leads to an overestimation
of yield in soybean (Twine et al., 2013) – a legume where
reductions in leaf N content at elevated Ca are theoretically
minimal (Rogers et al., 2009). Therefore, the potential for
model representation of photosynthetic acclimation to elevated
Ca to reduce errors of this type when modeling more N limited
systems is likely substantial. In future TBMs we believe it will
be important to capture the mechanisms that control physio-
logical acclimation to rising Ca and not just acclimation
resulting from reduced N availability. An approach that reduces
N allocation to Rubisco when Ca rises beyond the inflection
point of PFT-specific CO2 response curves would be a good
first step. However, unlike thermal acclimation, no algorithms
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have been developed to facilitate inclusion of this concept in
TBMs despite the substantial research from FACE experiments.
Published data from FACE experiments could potentially be
used for development and validation of a new approach.

Recommendation: (16) We need to develop new model repre-
sentations of the physiological acclimation of photosynthesis to
elevated Ca.

Leaf to canopy scaling

Due to the high nonlinearity of photosynthetic responses to light,
temperature and VPD, scaling A from leaves to canopy remains an
important challenge for models (Jarvis, 1995). Central to this
challenge is TBM representation of light penetration and utiliza-
tion within the canopy’s vertical profile and the vertical scaling of
physiology within the canopy. Analogous effects arise fromwithin-
canopy variations in temperature and VPD, although to a lower
degree (Niinemets & Anten, 2009).

Although the average light intensity typically decreases expo-
nentially with increasing cumulative leaf area index through the
canopy, the extent of this decline is affected by the optical properties
of individual leaves (including albedo) and how these change with
canopy depth, season and leaf age, leaf inclination angle distribu-
tion and foliage and canopy spatial clumping (Cescatti &
Niinemets, 2004; Kobayashi et al., 2007; Chen et al., 2012;
Drewry et al., 2014; Disney, 2015; Wu et al., 2016a,b). Further-
more, due to gaps in the canopy, leaves at a given value of
cumulative leaf area index can be sunlit or shaded, further
complicating the estimation of light at the leaf surface, leaf
absorption, and the subsequent numeric integration of canopy-
scale photosynthetic, water, and energy fluxes (de Pury&Farquhar,
1997, 1999; Wang & Leuning, 1998; Kobayashi et al., 2012).
Here, the models differ in how these scaling issues are addressed
(Table 1) and based on how the canopy is considered, they can be
broadly divided between multi-layer models and big-leaf models.

Several TBMs have used the ‘big leaf’ approach where a canopy
approximately represents a single big leaf with a single set of traits
describing the photosynthetic capacity together with characteristic
light and temperature response functions (generally by PFT),
typically scaled to the canopy as a function of leaf area index (e.g.
Amthor, 1994; Sands, 1996). Although sometimes still used (e.g.
G’DAY;Table 1), the big leafmodel approach consisting of a single
‘leaf’ has been demonstrated to be prone tomajor integration errors
due to lack of consideration of sunlit and shaded leaf area classes (de
Pury & Farquhar, 1997; Friend, 2001). These errors were
somewhat reduced by developing the ‘two big-leaf’ model
approach, which consists of separate handling of a representative
sunlit and a shaded big leaf (de Pury&Farquhar, 1997; Chen et al.,
1999; Dai et al., 2004). Indeed, separate integration of A for sunlit
and shaded leaf fractions provides a much more accurate integra-
tion of carbon and water fluxes (de Pury & Farquhar, 1997; Dai
et al., 2004), and this is the approach used in several contemporary
TBMs (Table 1).

Big leaf models differ in how whole-canopy Vc,max and Jmax

values are derived (or sunlit and shaded big leaf values are

derived), but typically, proportionality of photosynthetic capac-
ity and average light (deemed optimal) is assumed (Table 1;
Amthor, 1994; Sands, 1995a,b). Yet, such optimality is not
present in nature (Niinemets, 2012). In fact, the decline of
photosynthetic capacity through the canopy is much shallower
than that for light (Lloyd et al., 2010; Dewar et al., 2012;
Niinemets et al., 2015). Such departures from optimality have
been considered in some multi-layer models (Table 1), but
nevertheless, only a few datasets have been used to develop
global parameterizations for multi-layer models (e.g. Carswell
et al., 2000; Lloyd et al., 2010). PFT and biome-dependent
within-canopy acclimation patterns have recently been high-
lighted (Niinemets et al., 2015) and could be used in future
model development.

Depending on the distribution of foliage inclination angles
and spatial clumping, the probability for light penetration
varies at a given cumulative leaf area index (Cescatti &
Niinemets, 2004; Disney, 2015). Importantly, characteristic
canopy features differ among PFTs given fundamental differ-
ences in leaf habit and growth forms (Cescatti & Niinemets,
2004), as a result of land-use, landscape legacies and past
disturbance, but few TBMs take this into account. While the
multi-layer models can be easily modified to incorporate
different clumping and foliage inclination angles, this is much
less straightforward for the big leaf models. In fact, differences
in canopy architecture are part of the whole-canopy Vc,max and
Jmax values in current big leaf models, i.e. the input values get
converted to canopy-scale sunlit and shaded values blurring the
definition of Vc,max and Jmax and making comparison with
measured leaf level values impossible. Moreover, leaf optical
properties and foliar traits change markedly within the vertical
canopy profile (Serbin et al., 2014; Wu et al., 2016b; Yang
et al., 2016), but are often assumed static, which will generally
lead to improper representation of light interception and
utilization. This improper representation will feed forward to
the integration of leaf energy balance and carbon uptake. We
argue that traits like Vc,max and Jmax should retain their
original physiological definition and that more effort is needed
to improve the representation of canopy architecture and
subsequent scaling of foliar properties in TBMs. Modifications
to the underlying radiative transfer model (RTM) structure
and scaling can help to improve the representation of the
canopy light environment and modeling of carbon, water, and
energy fluxes (Kobayashi et al., 2012), however increasing
RTM complexity or vertical layering should not come at the
cost of the ability to parameterize the model. A promising
means to constrain these approaches is through model-data
integration whereby remote sensing observations (e.g. optical,
LiDAR) from the leaf to landscape are used to inform the
RTM structure and to parameterize across spatial and temporal
scales (e.g. Shiklomanov et al., 2016).

Recommendations: (17)TBMs should not use single layer big leaf
models. (18) We need better model representation of canopy
architecture and vertical scaling of foliar properties, and data to
evaluate alternative radiative transfermodels and scaling approaches.
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Canopy to landscape scaling

There is considerable variability in plant physiological traits
across space and time (Serbin et al., 2015; Singh et al., 2015),
even within an individual species or PFT (Kattge et al., 2011;
Serbin et al., 2014). This variability is driven by differences
across vegetation types, photosynthetic pathways, plant succes-
sional status, as well as a result of nutrient availability and other
abiotic factors. There is a propensity for strong covariance
among many key physiological traits as well as fundamental
tradeoffs which determine the distribution of these properties
across landscapes. Moreover, the nonlinearity in the scaling of
model processes from leaf to larger regions requires careful
consideration of model parameterization in order to effectively
capture the larger-scale emergent responses (Fisher et al., 2015).
Parameterization with single, fixed values of photosynthetic
capacity likely obscures the true response of vegetation to global
change across landscapes, particularly at the current climatic
extents of vegetation, thus inadequately capturing critical plant
threshold responses to factors such as temperature and precip-
itation. The links between leaf-level observations, environmental

responses and emergent landscape-scale parameterizations
needed for TBMs is are not straightforward, and as such global
parameterizations are commonly derived through the inversion
of large-scale datasets (e.g. Kattge et al., 2009; Lin et al., 2015).
However, use of such data sets can yield parameterization that is
inconsistent with current model structures resulting in unreal-
istic model outputs (e.g. Bonan et al., 2012). Furthermore, the
tradeoffs among variables (e.g. Vc,max vs N) are themselves
scale-dependent, with slopes changing depending on whether
one is looking at an across-PFT evolutionary constraint, a
within-PFT community response, or a within-individual
phenotypic response (Feng & Dietze, 2014). Care must be
taken to not use data constraints at one scale (e.g. global) to
drive responses at another scale (e.g. responses to change over
time).

The increasing use of trait databases (Wright et al., 2004; Kattge
et al., 2011) in modeling activities has started to address some of
these issues by leveragingmore comprehensive descriptions of traits
withinmodels and across PFTs (LeBauer et al., 2013;Dietze, 2014;
Fisher et al., 2015). These databases should also be used to more
extensively explore trait-environment relationships. New, model-

Fig. 6 Summary of the main areas of scientific activity required to advance representation of photosynthesis in Earth system models. Blue boxes show areas
where fundamental research is required to advance understanding before incorporation into models. Yellow boxes show areas where model refinement or
development is required to improve process representation. Green boxes highlight areas where data are needed to parameterize models or are required to
evaluate alternative approaches. The numbers in the boxes are keyed to our recommendations in the text.
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data integration frameworks (e.g. LeBauer et al., 2013; Dietze,
2014) can be used to explore the capacity to adequately param-
eterize existing and new model representations, expand PFT
descriptions, aswell as identify criticalmodel uncertainties and data
gaps and thus prioritize observational and model development
activities (Dietze, 2014).Given the current diversemethods used to
parameterize photosynthetic parameters (Rogers, 2014), the
available data (e.g. Kattge et al., 2011), and new opportunities to
markedly expand databases (e.g. Serbin et al., 2012; De Kauwe
et al., 2016), we recommend that models should now use common
parameterizations for photosynthetic parameters e.g. Vc,max and
Jmax that are constrained by the available data and consistent with
known trait covariance, thereby removing unnecessary uncertainty
from model projections.

The capacity to utilize remote sensing observations to inform
model parameterizations, representations, and trait-environment
relationships across spatial and temporal scales is increasing
(Dahlin et al., 2013; Serbin et al., 2015; Schimel et al., 2015;
Shugart et al., 2015; Singh et al., 2015). Importantly, remote
sensing observations can provide a synoptic view of trait variability
and functional diversity across landscapes (e.g. Dahlin et al., 2013;
Asner et al., 2015; Singh et al., 2015) and identify emergent
relationships that could be included in next-generation trait-based
models. These observations can also be used as important datasets
to benchmark prognostic traits at the relevant spatial scales (e.g.
Fisher et al., 2015). Proposed and upcoming satellite missions,
including NASA’s Hyperspectral Infrared Imager (HyspIRI)
mission concept (Lee et al., 2015) and the European Space
Agencies Environmental Mapping and Analysis Program
(EnMAP; Guanter et al., 2015), will provide a critical capacity to
provide this information for global-scale models.

Recommendations: (19) Data constraints (e.g. trait tradeoffs)
must be applied at the relevant spatial and temporal scales. (20)
Where possible, TBMs should use common parameterization for
photosynthetic parameters. (21) TBMs should make better use of
remote sensing data to inform model parameterizations and test
predictions.

Conclusion

Realistic model representation of A, and more broadly, plant
physiological processes, should be an essential component of
TBMs because that same plant physiology is determining the
response of the terrestrial biosphere to global change, including
the fate of the terrestrial carbon sink. However, many TBMs fail
to accurately represent photosynthetic responses to key environ-
mental variables. Here, in a subset of TBMs, we have shown
marked model divergence in the representation of key physio-
logical responses for a single well-defined PFT. We have made
21 recommendations that highlight where steps can be taken to
improve existing model representation. Our recommendations
include areas where immediate steps could be taken, areas where
model development is hindered by a lack of physiological data

and several important avenues of research that are critical to our
understanding that are not currently mature enough to include
in model structures. These recommendations are summarized in
Fig. 6.

Current model representation of A has a foundation in
research conducted in temperate climates. However, other
biomes that are climatically sensitive and globally important are
understudied, and therefore process representation in these
biomes is uncertain; the Arctic and tropics deserve particular
attention. The approach taken here, i.e. evaluating how TBMs
reproduce physiological responses to key environmental drivers,
was found to be extremely informative by all who participated.
We feel the process provides a useful template for meaningful
collaboration between empiricists and modelers and that
including the physiological outputs considered here as readily
available diagnostic features would be a highly valuable addition
in new TBMs. This study also highlighted the need for a multi-
assumption model framework within which the modeling
community and domain experts could evaluate different model
structures and parameterization approaches and quantitatively
evaluate their effect on model outputs. Such a framework
would provide a forum where modelers and, in this case,
physiologists could reach agreement over the best approaches
for representing and parameterizing the sub-processes within
complex TBMs.
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Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MAJ.

2016. Surveying Rubisco diversity and temperature response to improve crop

photosynthetic efficiency. Plant Physiology doi: 10.1104/00.16.00750.
Ort DR, Long SP. 2014. Limits on yields in the corn belt. Science 344: 483–484.
de PuryDGG, FarquharGD. 1997. Simple scaling of photosynthesis from leaves to

canopies without the errors of big-leaf models. Plant, Cell & Environment 20:
537–557.

de Pury DGG, Farquhar GD. 1999. A commentary on the use of a sun/shade

model to scale from the leaf to a canopy. Agricultural and Forest Meteorology 95:
257–260.

Raddatz T, Reick CH, KnorrW, Kattge J, Roeckner E, Schnur R, Schnitzler K-G,

Wetzel P, Jungclaus J. 2007.Will the tropical land biosphere dominate the

climate–carbon cycle feedback during the twenty-first century?Climate Dynamics
29: 565–574.

Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits

manifesto. Journal of Ecology 102: 275–301.
RogersA. 2014.Theuse andmisuse ofVc,max inEarth SystemModels.Photosynthesis
Research 119: 15–29.

Rogers A, Ainsworth EA, Leakey ADB. 2009.Will elevated carbon dioxide

concentration amplify the benefits of nitrogen fixation in legumes? Plant
Physiology 151: 1009–1016.

Rogers A, Fischer BU, Bryant J, Frehner M, BlumH, Raines CA, Long SP. 1998.

Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is

affected by the capacity for assimilate utilization. Perennial ryegrass under free-air

CO2 enrichment. Plant Physiology 118: 683–689.
Rogers A, Humphries SW. 2000. A mechanistic evaluation of photosynthetic

acclimation at elevated CO2. Global Change Biology 6: 1005–1011.
SageRF,KubienDS. 2007.The temperature response ofC3 andC4 photosynthesis.

Plant, Cell & Environment 30: 1086–1106.
Sage RF, Sharkey TD. 1987. The effect of temperature on the occurrence of O2 and

CO2 insensitivephotosynthesis infield-grownplants.PlantPhysiology84: 658–664.
Salvucci ME, Crafts-Brandner SJ. 2004a. Inhibition of photosynthesis by heat

stress: the activation state of Rubisco as a limiting factor in photosynthesis.

Physiologia Plantarum 120: 179–186.
Salvucci ME, Crafts-Brandner SJ. 2004b. Relationship between the heat tolerance

of photosynthesis and the thermal stability of Rubisco activase in plants from

contrasting thermal environments. Plant Physiology 134: 1460–1470.
Sands PJ. 1995a.Modelling canopy production. I. Optimal distribution of

photosynthetic resources. Australian Journal of Plant Physiology 22: 593–601.
SandsPJ. 1995b.Modelling canopyproduction. II. From single-leaf photosynthetic

parameters to daily canopy photosynthesis. Australian Journal of Plant Physiology
22: 603–614.

Sands PJ. 1996.Modelling canopy production. III. Canopy light-utilisation

efficiency and its sensitivity to physiological and environmental variables.

Australian Journal of Plant Physiology 23: 103–114.
Sato H, Kumagai TO, Takahashi A, Katul GG. 2015. Effects of different

representations of stomatal conductance response to humidity across the African

New Phytologist (2017) 213: 22–42 No claim to original US Government works

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

ViewpointsForum

New
Phytologist40

http://dx.doi.org/10.1104/00.16.00750


continent under warmerCO2-enriched climate conditions. Journal of Geophysical
Research-Biogeosciences 120: 979–988.

Sauter A, Davies WJ, Hartung W. 2001. The long-distance abscisic acid signal in

the droughted plant: the fate of the hormone on its way from root to shoot. Journal
of Experimental Botany 52: 1991–1997.

Scafaro AP, YamoriW, Carmo-Silva AE, Salvucci ME, Von Caemmerer S, Atwell

BJ. 2012.Rubisco activity is associated with photosynthetic thermotolerance in a

wild rice (Oryza meridionalis). Physiologia Plantarum 146: 99–109.
Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global

vegetation models: learning from community ecology. New Phytologist 198:
957–969.

Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C,

Frankenberg C, Hibbard K, Cox P. 2015.Observing terrestrial ecosystems and

the carbon cycle from space. Global Change Biology 21: 1762–1776.
Sellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration.

International Journal of Remote Sensing 6: 1335–1372.
Sellers PJ. 1987.Canopy reflectance, photosynthesis, and transpiration. 2. The role

of biophysics in the linearity of their interdependence. Remote Sensing of
Environment 21: 143–183.

Serbin SP, Dillaway DN, Kruger EL, Townsend PA. 2012. Leaf optical properties

reflect variation in photosynthetic metabolism and its sensitivity to temperature.

Journal of Experimental Botany 63: 489–502.
Serbin SP, Singh A, Desai AR, Dubois SG, Jablonsld AD, Kingdon CC, Kruger

EL, Townsend PA. 2015. Remotely estimating photosynthetic capacity, and its

response to temperature, in vegetation canopies using imaging spectroscopy.

Remote Sensing of Environment 167: 78–87.
Serbin SP, SinghA,McNeil BE,KingdonCC,TownsendPA. 2014. Spectroscopic

determination of leaf morphological and biochemical traits for northern

temperate and boreal tree species. Ecological Applications 24: 1651–1669.
SharkeyTD. 1985.Photosynthesis in intact leaves ofC3 plants–physics, physiology
and rate limitations. Botanical Review 51: 53–105.

Shiklomanov AN, Dietze MC, Viskari T, Townsend PA, Serbin SP. 2016.

Quantifying the influences of spectral resolution on uncertainty in leaf trait

estimates through a Bayesian approach to RTM inversion. Remote Sensing of
Environment 183: 226–238.

Shugart HH, Asner GP, Fischer R, Huth A, Knapp N, Le Toan T, Shuman JK.

2015.Computer and remote-sensing infrastructure to enhance large-scale testing

of individual-based forest models. Frontiers in Ecology and the Environment 13:
503–511.

Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA. 2015. Imaging

spectroscopy algorithms for mapping canopy foliar chemical and morphological

traits and their uncertainties. Ecological Applications 25: 2180–2197.
Singsaas EL, Ort DR, Delucia EH. 2001. Variation in measured values of

photosynthetic quantum yield in ecophysiological studies. Oecologia 128: 15–
23.

Slatyer RO, Ferrar PJ. 1977. Altitudinal variation in the photosynthetic

characteristics of snow gum, Eucalyptus paucijlora Sieb. Ex. Spreng. V. Rate of
acclimation to an altered growth environment. Australian Journal of Plant
Physiology 4: 595–609.

Slot M, Garcia MN, Winter K. 2016. Temperature response of CO2 exchange in

three tropical tree species. Functional Plant Biology 43: 468–478.
Smith NG, Dukes JS. 2013. Plant respiration and photosynthesis in global-scale

models: incorporating acclimation to temperature and CO2. Global Change
Biology 19: 45–63.

Smith NG, Malyshev SL, Shevliakova E, Kattge J, Dukes JS. 2016. Foliar

temperature acclimation reduces simulated carbon sensitivity to climate. Nature
Climate Change 6: 407.

Spitters CJT. 1986. Separating the diffuse and direct component of global radiation

and its implications for modeling canopy photosynthesis. 2. Calculation of

canopy photosynthesis. Agricultural and Forest Meteorology 38: 231–242.
Stinziano J, H€uner NPA, Way DA. 2015.Warming delays autumn declines in

photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree
Physiology 35: 1303–1313.

Stoy PC, Trowbridge AM, Bauerle WL. 2014. Controls on seasonal patterns of

maximum ecosystem carbon uptake and canopy-scale photosynthetic light

response: contributions from both temperature and photoperiod. Photosynthesis
Research 119: 49–64.

Suits NS, Denning AS, Berry JA, Still CJ, Kaduk J, Miller JB, Baker IT. 2005.

Simulation of carbon isotope discrimination of the terrestrial biosphere. Global
Biogeochemical Cycles 19: B1017.

SunY,GuLH,DickinsonRE, Pallardy SG, Baker J, Cao YH,DaMatta FM,Dong

XJ, Ellsworth DS, Van Goethem D. 2014. Asymmetrical effects of mesophyll

conductance on fundamental photosynthetic parameters and their relationships

estimated from leaf gas exchange measurements. Plant, Cell & Environment 37:
978–994.

Tardieu F, DaviesWJ. 1993. Integration of hydraulic and chemical signaling in the

control of stomatal conductance and water status of droughted plants. Plant, Cell
& Environment 16: 341–349.

Teskey R, Wertin T, Bauweraerts I, Ameye M, Mcguire MA, Steppe K. 2015.

Responses of tree species to heat waves and extreme heat events. Plant, Cell &
Environment 38: 1699–1712.

Tholen D, Ethier G, Genty B, Pepin S, Zhu XG. 2012. Variable mesophyll

conductance revisited: theoretical background and experimental implications.

Plant, Cell & Environment 35: 2087–2103.
ThumT, Aalto T, Laurila T, AurelaM, Kolari P,Hari P. 2007. Parametrization of

two photosynthesis models at the canopy scale in a northern boreal Scots pine

forest. Tellus Series B-Chemical and Physical Meteorology 59: 874–890.
Tuzet A, Perrier A, Leuning R. 2003. A coupled model of stomatal conductance,

photosynthesis and transpiration. Plant, Cell & Environment 26: 1097–1116.
Twine TE, Bryant JJ, Richter K, Bernacchi CJ, Mcconnaughay KD, Morris SJ,

Leakey ADB. 2013. Impacts of elevated CO2 concentration on the productivity

and surface energy budget of the soybean andmaize agroecosystem in theMidwest

USA. Global Change Biology 19: 2838–2852.
Wang YP, Leuning R. 1998. A two-leaf model for canopy conductance,

photosynthesis and partitioning of available energy. I. Model description and

comparison with a multi-layered model. Agricultural and Forest Meteorology 91:
89–111.

Warren JM, JensenAM,Medlyn BE,NorbyRJ, TissueDT. 2015.Carbon dioxide

stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a
12-year field experiment. Aob Plants 7: plu074.

Way DA, Montgomery RA. 2015. Photoperiod constraints on tree phenology,

performance and migration in a warmer world. Plant, Cell & Environment 38:
1725–1736.

Way DA, Oren R. 2010. Differential responses to increased growth temperatures

between trees fromdifferent functional groups and biomes: a review and synthesis

of data. Tree Physiology 30: 669–688.
Way DA, Oren R, KimH-S, Katul GG. 2011.How well do stomatal conductance

models perform on closing plant carbon budgets? A test using seedlings grown

under current and elevated air temperatures. Journal of Geophysical Research:
Biogeosciences 116: G4.

Way DA, Yamori W. 2014. Thermal acclimation of photosynthesis: on the

importance of adjusting our definitions and accounting for thermal acclimation of

respiration. Photosynthesis Research 119: 89–100.
Wilkinson S, Davies WJ. 2002. ABA-based chemical signalling: the co-ordination

of responses to stress in plants. Plant, Cell & Environment 25: 195–210.
Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR,

Melilo JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996.Modelling the soil–
plant–atmosphere continuum in a Quercus-Acer stand at Harvard forest: the

regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic

properties. Plant, Cell & Environment 19: 911–927.
Williams MA, Xia K. 2009. Characterization of the water soluble soil organic pool

following the rewetting of dry soil in a drought-prone tallgrass prairie. Soil Biology
& Biochemistry 41: 21–28.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-

Bares J, Chapin T, Cornelissen JHC,DiemerM et al. 2004.The worldwide leaf
economics spectrum. Nature 428: 821–827.

Wu J, Albert LP, Lopes AP, Restrepo-CoupeN,HayekM,WiedemannKT,Guan

K, Stark SC, Christoffersen B, Prohaska N et al. 2016a. Leaf development and

demography explain photosynthetic seasonality in Amazon evergreen forests.

Science 351: 972–976.
Wu J, Chavana-Bryant C, Prohaska N, Serbin SP, Guan K, Albert L, Yang X, van

LeeuwenW,Garnello J,MartinsG et al.2016b.Convergence in relations among

leaf traits, spectra and age across diverse canopy environments and two contrasting

tropical forests. New Phytologist. doi: 10.1111/nph.14051.

No claim to original US Government works

New Phytologist� 2016 New Phytologist Trust
New Phytologist (2017) 213: 22–42

www.newphytologist.com

New
Phytologist Viewpoints Forum 41

http://dx.doi.org/10.1111/nph.14051


Wullschleger SD, Epstein HE, Box EO, Euskirchen ES, Goswami S, Iversen CM,

Kattge J,NorbyRJ, vanBodegomPM,XuX. 2014.Plant functional types inEarth

system models: past experiences and future directions for application of dynamic

vegetation models in high-latitude ecosystems. Annals of Botany 114: 1–16.
Xu CG, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG. 2012.

Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.

PLoS ONE 7: e37914.

Yamori W, Hikosaka K, Way DA. 2014. Temperature response of photosynthesis

inC3,C4, andCAMplants: temperature acclimation and temperature adaptation.

Photosynthesis Research 119: 101–117.
Yang X, Tang JW, Mustard JF, Wu J, Zhao KG, Serbin S, Lee JE. 2016. Seasonal

variability of multiple leaf traits captured by leaf spectroscopy at two temperate

deciduous forests. Remote Sensing of Environment 179: 1–12.
Zaehle S, Friend AD. 2010.Carbon and nitrogen cycle dynamics in theO-CN land

surface model: 1. Model description, site-scale evaluation, and sensitivity to

parameter estimates. Global Biogeochemical Cycles 24: GB1005.

Zaehle S,MedlynBE,DeKauweMG,WalkerAP,DietzeMC,HicklerT,LuoYQ,

Wang YP, El-Masri B, Thornton P et al. 2014. Evaluation of 11 terrestrial

carbon-nitrogen cycle models against observations from two temperate Free-Air

CO2 Enrichment studies. New Phytologist 202: 803–822.
Zhou SX, Duursma RA, Medlyn BE, Kelly JWG, Prentice IC. 2013. How

should we model plant responses to drought? An analysis of stomatal and

non-stomatal responses to water stress. Agricultural and Forest Meteorology
182: 204–214.

Ziehn T, Kattge J, Knorr W, Scholze M. 2011. Improving the predictability of

global CO2 assimilation rates under climate change. Geophysical Research Letters
38: L10404.

Key words: carbon dioxide CO2, light, soil water content, stomatal conductance,

temperature, terrestrial biosphere models, vapor pressure deficit (VPD).

New Phytologist (2017) 213: 22–42 No claim to original US Government works

New Phytologist� 2016 New Phytologist Trustwww.newphytologist.com

ViewpointsForum

New
Phytologist42


